Research partly supported by DK 41009 and the American Heart Association, New York State Affiliate 87-095G.

References

CODY, V. (1987). Acta Cryst. C43, 1325–1328. CODY, V., SUWIŃSKA, K. & WOJTCZAK, A. (1991). Acta Cryst. C47, 156–159. CODY, V. & WOJTCZAK, A. (1991). Acta Cryst. C47, 787-790.

DE TITTA, G. T., EDMONDS, J. W., LANGS, D. A. & HAUPTMAN, H. A. (1975). Acta Cryst. A31, 472–479.

MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1991). C47, 1744–1746

Structure of 2',4'-Dihydroxy-4,6'-dimethoxy- α , β -dihydrochalcone

BY M. DE MATHEUS AND J. C. MARTÍNEZ

Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia

AND J. RIUS* AND C. MIRAVITLLES

Institut de Ciencia de Materials de Barcelona (CSIC), Campus Universitari de Bellaterra, 08193 Cerdanyola (Barcelona), Spain

(Received 2 November 1990; accepted 21 January 1991)

Abstract. $C_{17}H_{18}O_5$, $M_r = 302$, monoclinic, $P2_1/c$, a $= 4.856 (3), b = 28.896 (7), c = 10.776 (3) \text{ Å}, \beta =$ $98.04 (4)^{\circ}$, $V = 1497 (1) \text{ Å}^3$, Z = 4, $D_x = 1.34 \text{ g cm}^{-3}$, Mo $K\alpha$, $\lambda = 0.71069$ Å, $\mu = 0.922$ cm⁻¹, F(000) =640, room temperature, R = 0.068, wR = 0.074 for 792 observed reflections $[I \ge 2.5\sigma(I)]$. The phenyl rings are planar within experimental accuracy; the angle between the normals to the best least-squares planes of the phenyl rings is 81.49 (9)°. Intermolecular and intramolecular hydrogen bonds are present: O1...H3'-O3' $(x-1, \frac{1}{2}-y, \frac{1}{2}+z), 2.77(1)$ Å, O2-H2...O1, 2.50 (1) Å; this interaction may contribute to the low value of the O1-C1-C2-C3 $[-5.42(9)^{\circ}]$ and O1-C1-C11-C12 $[5.63(9)^{\circ}]$ torsion angles. The molecular structure found is in total agreement with spectroscopic results.

Experimental. Transparent colourless flat prism of dimensions $0.20 \times 0.08 \times 0.15$ mm, Enraf-Nonius CAD-4 diffractometer, Mo $K\alpha$ radiation, graphite monochromator. Unit-cell parameters were determined by least squares from 25 reflections with $3 \le \theta \le 13^\circ$; 5191 reflections collected, 2632 unique, 792 considered observed with $I \ge 2.5\sigma(I)$; $\omega-2\theta$ scan mode, hkl range: $-5 \le h \le 5$, $-34 \le k \le 34$, $0 \le l \le 12$, $\theta \le 25^\circ$. Three standard reflections monitored every 50 measurements showed no significant decay in intensity. Lorentz-polarization corrections, but no absorption correction. Structure solved by direct

methods (MULTAN11/84; Main, Germain & Woolfson, 1984). Anisotropic full-matrix leastsquares refinement (on F) for non-H atoms (SHELX76; Sheldrick, 1976). Hydroxy H atoms were found by difference Fourier synthesis and included in the refinement, and the remaining H atoms were included at calculated positions in the final cycle and refined; two different isotropic temperature factors, one for methyl and one for non-methyl H atoms, were refined to final values U= 0.106 (16) and 0.121 (13) Å², respectively; R = 0.068, wR = 0.074, $w = 1.2689/[\sigma^2(F) + 0.002575F^2]$ for 792 observed reflections and 207 variables. Final $(\Delta/\sigma)_{\rm max} = 0.11$, S = 1.17. Largest peaks in final ΔF map: -0.24 and $0.19 \text{ e}^{\text{A}-3}$. Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV). Plots were made with PLUTO (Motherwell & Clegg, 1978). All calculations were performed on a MicroVAX II computer.

The atomic parameters are given in Table 1.† A view of the molecule with the atomic numbering scheme is shown in Fig. 1; the molecular packing is shown in Fig. 2. Table 2 gives bond distances and angles.

03\$03.00 © 1991 International Union of Crystallography

^{*} To whom correspondence should be addressed.

[†] Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, torsion angles and least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53935 (12 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Atomic coordinates with e.s.d.'s in
parentheses and equivalent isotropic thermal
parameters (Å2)

_ _

$\boldsymbol{B}_{\rm eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_{i'} \mathbf{a}_{j'}.$				
	x	у	Ζ	B_{eq}
C11	0.4923 (20)	0.2231(3)	1.0850 (8)	3.4
C12	0.4386 (20)	0.2717(4)	1 1085 (9)	3.5
O2	0.2713 (14)	0.2856 (2)	1.1892 (6)	4.4
C13	0.5595 (19)	0.3062 (3)	1.0450 (9)	3.7
C14	0.7372 (21)	0.2944 (3)	0.9613 (9)	3.9
O3	0.8586 (19)	0.3292 (2)	0.9016 (7)	4-9
C15	0.7927 (22)	0.2485 (3)	0.9340 (9)	3.9
C16	0.6728 (20)	0.2134 (4)	0.9947 (8)	3.8
O4	0.7162 (15)	0.1681 (2)	0.9739 (6)	4.9
C17	0.8647 (25)	0.1564 (3)	0.8739 (10)	5-4
Cl	0.3570 (22)	0.1887 (4)	1.1577 (10)	4∙2
01	0.1870 (13)	0.2019 (2)	1.2280 (6)	4∙6
C2	0.4151 (22)	0.1385 (3)	1.1503 (9)	4·2
C3	0.2743 (24)	0.1091 (3)	1.2419 (11)	5.7
C31	0.3907 (24)	0.0597 (4)	1.2516 (11)	4∙7
C32	0.307 (4)	0.0270 (5)	1.1630 (19)	12.3
C33	0.406 (4)	-0.0180 (5)	1.1688 (17)	10.5
C34	0.5955 (24)	-0.0309(4)	1.2638 (12)	4.8
O5	0.6813 (19)	-0.0761(3)	1.2653 (8)	7.0
C35	0.698 (3)	0.0017 (5)	1.3469 (14)	9.6
C36	0.585 (4)	0.0454 (5)	1.3399 (14)	10.0
C37	0.885 (3)	-0.0903(5)	1.3642 (13)	8.0
H2	0.208 (27)	0.256 (5)	1.236 (12)	9.6
H3	1.005 (27)	0.319 (5)	0.871 (12)	9∙6

 Table 2. Interatomic distances (Å) and angles (°) with
 e.s.d.'s in parentheses

C2-C1	1.48 (1)	C2—C3	1.53 (1)
C101	1.25 (1)		
C1-C11	1.48 (1)	C3-C31	1.53 (1)
C11-C12	1.46 (1)	C31—C32	1.36 (2)
C12C13	1.39 (1)	C32—C33	1.38 (2)
C13-C14	1.38 (1)	C33—C34	1.33 (2)
C14-C15	1.39 (1)	C34—C35	1.35 (2)
C15-C16	1.38 (1)	C35—C36	1.37 (2)
C16-C11	1.42 (1)	C36—C31	1.31 (2)
C12—O2	1.33 (1)		
C14—O3	1.37 (1)		
C16-04	1.39 (1)	C34—O5	1.37 (1)
C17O4	1.42 (1)	C37O5	1.41 (1)
	119 5 (0)		112.0 (0)
CI = CI = CZ	110.5 (9)	C3C2C1	113.9 (9)
	122.0 (0)	C1 C2 C31	111.5 (0)
	122.0 (9)	$C_2 = C_3 = C_3$	111.5 (9)
CI = CII = CI2	126.2 (0)	C_{3} C_{3	121(1) 124(1)
	120.2 (9)	$C_{21} - C_{22} - C_{23}$	124 (1)
C12 - C12 - C13	120.0 (9)	$C_{22} - C_{22} - C_{23}$	12.5(2)
C12 - C13 - C14	117 (1)	$C_{32} - C_{33} - C_{34}$	120(1)
C13 - C14 - C13	122.1 (9)	$C_{34} - C_{35} - C_{36}$	120 (1)
C14 - C15 - C10	121.2 (0)	C35-C36-C11	125 (1)
CII = CII = CII	121-3 (9)	C35-C50-C11	125 (1)
C13 - C14 - O3	118.5 (9)		
C15 - C16 - 04	123.2 (8)	C33-C34-O5	117(1)
C16-04-C17	117.8(7)	$C_{34} - C_{5} - C_{37}$	118(1)
	11,0(7)	05, 05 057	

Related literature. In the course of systematic studies of Colombian natural products, the title compound was isolated from leaves of a specimen of *Iryanthera tricornis* and recrystallized from acetone-hexane (m.p. 444-445 K). Braz-Filho, Da Silva & Gottlieb (1980) and Garzon, Cuca, Martínez, Yoshida & Gottlieb (1987) reported the presence of 2',4'-dihydroxy-4,6'-dimethoxydihydrochalcone in the

woody trunk and in the fruit of *Iryanthera laevis* (Myristicaceae). The structure of the compound was determined by these authors on the basis of MS, UV, ¹H and ¹³C NMR. The ¹H and ¹³C NMR spectra of the title compound are consistent. Recently, the activity of 2',4'-dihydroxy-4,6'-dimethoxydihydro-chalcone against Gram (+) bacteria (*Bacilus*)

Fig. 1. View of the molecule with atom-numbering scheme.

Fig. 2. Unit-cell packing diagram viewed down the *a* axis.

anthasis) was reported (Villamil, Cuca & Martínez, 1988).

The crystal structure determination was undertaken in order to confirm the assignment and to learn the three-dimensional configuration of the molecule.

Financial support from ICI-CSIC through the project of scientific cooperation between Spain and Colombia 'Cristaloquimica de productos naturales, síntesis y estructura de compuestos inorganicos', and from the Commission of the European Community [contract CI1*.0447.ES(JR)] is gratefully acknowledged.

References

- BRAZ-FILHO, R., DA SILVA, M. S. & GOTTLIEB, O. R. (1980). Phytochemistry, 19, 1195–1197.
- GARZON, L., CUCA, L. E., MARTÍNEZ, J. C., YOSHIDA, M. & GOTTLIEB, O. R. (1987). *Phytochemistry*, 26, 2835–2837.
- MAIN, P., GERMAIN, G. & WOOLFSON, M. M. (1984). MULTAN11/84. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). PLUTO78. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- VILLAMIL, E., CUCA, L. E. & MARTÍNEZ, J. C. (1988). Spectroscopy, 6, 157-165.

Acta Cryst. (1991). C47, 1746-1748

Structure of 1-(2',4'-Dihydroxyphenyl)-3-(3'',4''-methylenedioxyphenyl)propane hemihydrate

BY M. DE MATHEUS AND J. C. MARTÍNEZ

Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia

AND J. RIUS* AND C. MIRAVITLLES

Institut de Ciencia de Materials de Barcelona (CSIC), Campus Universitari de Bellaterra, 08193 Cerdanyola (Barcelona), Spain

(Received 20 October 1990; accepted 2 January 1991)

Abstract. 4-[(Benzo-1,3-dioxol-5-yl)propyl]-mresorcinol hemihydrate, $C_{16}H_{16}O_{4}\frac{1}{2}H_{2}O$, $M_r = 281.3$, monoclinic, C2/c, a = 41.01 (6), b = 4.842 (3), c =14.11 (3) Å, $\beta = 93.28$ (8)°, V = 2798 (7) Å³, Z = 8, $D_x = 1.33$ g cm⁻³, Mo K α , $\lambda = 0.71069$ Å, $\mu =$ 0.090 for 863 observed reflections and 88 parameters. Each pair of molecules of diarylpropane, related by a crystallographic twofold axis, are linked through hydrogen bonds to a disordered water molecule located on the twofold axis $[Ow \cdots O2 = 2.77 (1) \text{ Å}].$ Other important intermolecular contacts are $O1 \cdots O2'(x, 1-y, 0.5+z)$ at 2.67 (1) Å and $O1 \cdots Ow''(2 - x, -y, 2 - z)$ at 2.74 (1) Å. The phenyl rings 1 and 3 are planar to within standard deviations of 0.006 and 0.008 Å, respectively; the methylenedioxy atoms O3, O4 and C37 are -0.009, -0.021 and -0.047 Å out of the 3-phenyl ring plane; the angle between normals to phenyl-ring planes is $100.3 (9)^\circ$. The results of the X-ray study are in full agreement with the structure proposed on the basis of spectral and analytical data.

0108-2701/91/081746-03\$03.00

Experimental. Benzenic extract of trunk wood of a specimen of *Iryanthera tricornis* collected in the Amazonic region of Colombia affords 1-(2',4'-dihydroxyphenyl)-3-(3'',4''-methylenedioxyphenyl)-propane and also two additional 1,3-diarylpropanes.

Transparent colourless needles of the title compound were obtained from a benzene-n-hexane solution (m.p. 373-374 K), a crystal suitable for X-ray study with dimensions $0.10 \times 0.06 \times 0.02$ mm was mounted on an Enraf-Nonius CAD-4 diffractometer, Mo $K\alpha$ radiation, graphite monochromator. Unit-cell parameters by least squares from 25 reflections with $3 \le \theta \le 17^{\circ}$; 2071 reflections collected, 863 considered observed with $I \ge 2.5\sigma(I)$; $\omega - 2\theta$ scan mode, *hkl* range: $-11 \le h \le 11$, $0 \le k \le 5$, $0 \le l \le 11$ 13, $\theta \leq 23^{\circ}$; three standard reflections monitored every 50 measurements showed no significant decay in intensity. Lorentz-polarization corrections, but no absorption correction. Structure solved by direct methods (MULTAN11/84; Main, Germain & Woolfson, 1984). The poor diffracting quality of the crystals did not allow measurement of sufficient intensity data to perform anisotropic refinements; isotropic full-matrix least-squares refinement (on F)

00 © 1991 International Union of Crystallography

^{*} To whom correspondence should be addressed.